Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection
نویسندگان
چکیده
Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant-pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant-pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea-cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen-host interaction.
منابع مشابه
Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against botrytis cinerea.
Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the potential of oxalate-degrading bacteria to protect plants against pathogenic fungi. Such bacteria wer...
متن کاملTomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea
Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and...
متن کاملMicroarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea
The WRKY33 transcription factor was reported for resistance to the necrotrophic fungus Botrytis cinerea. Using microarray-based analysis, we compared Arabidopsis WRKY33 overexpressing lines and wrky33 mutant that showed altered susceptibility to B. cinerea with their corresponding wild-type plants. In the wild-type, about 1660 genes (7% of the transcriptome) were induced and 1054 genes (5% of t...
متن کاملComparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6
Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascom...
متن کاملControl of Cucumber Grey Mold by Endophytic Bacteria R. P. An and Q. Ma College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest
Endophytic bacterial strains B12 and B13 isolated from cucumber leaves effectively controlled cucumber grey mold, Botrytis cinerea. Both culture broth and culture filtrates were effective in inhibiting spore germination and germtube elongation of B. cinerea. Preliminary studies on the effects of pH and temperature on stability of the culture filtrates in inhibition of the pathogen were made. In...
متن کامل